Image source |
What is PV-10's clinical value proposition to Merck & Co. (pembrolizumab, Keytruda®) and Bristol-Myers (nivolumab, Opdivo®), among other Big Pharma in the oncology space? In no particular order, is it, among other things:
- As a primer, front-end, turner-on-of-the-engine, stepper-on-the-gas pedal, [insert your favorite over-, weakly- or wrongly-used analogy or metaphor],
- Synergism, where from an efficacy perspective 1 + 1 >> 2,
- Agnosticism to tumor type/cancer indication,
- Safety profile, and/or
- Turning cold tumors hot, and hot tumors hotter?
Industry discussion appears to recognize immune checkpoint inhibitors work — when/where they do work — in a portion of cancer patients. Is the summary clinical value proposition of PV-10 in combination with Keytruda/Opdivo to make the latter (i.e., these anti-PD-1 drugs) work better when and where they work? Or is PV-10's proposition, the more powerful one, to show it can make Keytruda/Opdivo work better where they do not work?
PV-10's clinical value proposition to Merck & Co. (pembrolizumab, Keytruda®) and Bristol-Myers (nivolumab, Opdivo®) is that it (PV-10) can turn more anti-PD-1 non-responders into responders than any other partner drug or investigational compound.
For this blog post, consider, among other things, two combinations with pembrolizumab (for advanced melanoma):
- Intralesional* agent electroporation with plasmid interleukin-12 (epIL-12) (ImmunoPulse, OncoSec), the combination of a medical device and an investigational agent, and
- Intratumoral* agent toll-like receptor 9 (TLR9) agonist SD-101 (Dynavax), an investigational agent too.
* Intralesional = intratumoral
OncoSec. OncoSec announced in November 2014 it would combine ImmunoPulse and pembrolizumab, UC San Francisco and OncoSec Medical Collaborate to Evaluate Investigational Combination of ImmunoPulse and Anti-PD-1 Treatment. Data from this investigator-initiated study were presented at AACR 2016 (April), "Positive Melanoma Clinical Data at American Association for Cancer Research (AACR) Annual Meeting 2016," where patients initially were treated with ImmunoPulse and, then, some went to receive systemic anti-PD-1/PD-L1 therapy. Notably, however, OncoSec announced this month data from the same study would be presented at SITC 2016 (November), "Acceptance of Late Breaking Abstract at Upcoming Society for Immunotherapy of Cancer (SITC) Annual Meeting 2016," where the focus would be on [clinical data from] patients with a low likelihood of response to an anti-PD-1 alone (i.e., anti-PD-1 failures).
Dynavax. Dynavax and Merck & Co. announced a collaboration in June 2015, Investigating the Combination of Immuno-Oncology Therapies. Initial clinical data of the combination of SD-101 and pembrolizumab in patients with metastatic melanoma was presented at ESMO 2016, "Phase 1b/2, Open-Label, Multicenter, Dose-Escalation and Expansion Trial of Intratumoral SD-101 in Combination With Pembrolizumab in Patients with Metastatic Melanoma." Preclinical work on SD-101 was presented at AACR 2016 by Dynavax observed, "These data provide a strong rationale for the clinical assessment of SD-101 in combination with agents blocking the PD-1/PD-L1 pathway in patients unresponsive to PD-1 blockade alone." Dynavax and Merck jointly observed on their ESMO 2016 poster, "Preclinical studies suggest that the immunostimulatory effects of SD-101 might also boost the activity of PD-1 checkpoint inhibitor therapy. In mouse models, SD-101 converted anti-PD-1 non-responders into responders by increasing the quantity and quality of tumor-specific T cells." {my underlined emphasis}
In order for Provectus CTO Dr. Eric Wachter, PhD to put Provectus in a position to garner a collaboration with a Big Pharma and its immune checkpoint inhibitor, he has to provide a compelling demonstration of the features of PV-10 in combination with an anti-PD-1 drug like pembrolizumab (e.g., clinical trial PV-10 in Combination With Pembrolizumab for Treatment of Metastatic Melanoma). The features of this demonstration would include (a) preliminary safety and efficacy results, (b) immune biomarkers to facilitate appropriate patient selection if and when the combination is approved, and, presumably, (c) the ability of PV-10 to better turn anti-PD-1 non-responders into responders.
Contesting anti-PD-1 non-responders into responders should be a big deal for Merck and Bristol-Myers because such contestation is all about eating more of the rest of the pie, much more so than fighting over the same sliver of it.
Updated (10/19/16): OncoSec. ref. "OncoSec (ONCS) Q4 2016 Earnings Call Transcript," Seeking Alpha
I referenced epIL-12 (and OncoSec) above because of the useful information regarding anti-PD-1 failures or non-responders. The oncology playing field continues to evolve, and combination therapy approaches clearly are evolving as well across multiple dimensions, like (i) determining which patients when and how [immune biomarkers], and (ii) expanding the addressable market from responders to non-responders.
Among other aspects of an analysis of epIL-12 (and OncoSec), which historically has been mentioned together with Amgen's T-Vec and Provectus' PV-10, like at ASCO 2014 (see "Expert Point of View: Axel Hauschild, MD," The ASCO Post, Caroline Helwick, July 25, 2014), (a) there does not appear to be an initial pathway to approval yet (if at all) for epIL-12 as a monotherapy and (b) the investigator-initiated study was neither designed nor powered to transition to a pivotal trial as a combination therapy. OncoSec hopes to secure agreement with (acquiescence by) the FDA on a pivotal/registration trial design by the end of the year. Initial pathways to approval, like what Provectus has with PV-10 as a monotherapy for locally advanced cutaneous melanoma, as with valuable beachfront property, is valuable drug treatment "real estate." Nevertheless, it is a good strategy for OncoSec to focus on PD-1 failures; using emerging biomarker data to select "likely" PD-1 failures, however, is likely to prove somewhat more challenging. It will be interesting to see how this plays out.
Dynavax. This is a true treatment combination and company collaboration (compared to the OncoSec treatment combination, for which the clinical trial protocol is here). The results are interesting, if not very preliminary (e.g., efficacy from 5 patients, measurement [for purposes of the ESMO 2016 abstract] was made after only 12 weeks). One would have hoped they could have provided a few more details (e.g, the number of injections of SD-101 [presumably 11 in total], more details on patient stage [particularly Stage IV, like M1a, M1b and/or M1c], what the grade 4 SAE was, etc.).
A 25% serious adverse event (SAE) rate seems a bit high, and this is kind of an odd way to report safety data; usually this is reported as CTCAE Grade 3 or higher events since this includes both severe AEs and the subset of those that qualify as SAEs. Robert et al. reported 10.1-13.3% rate of Grade 3 or higher AEs for pembrolizumab alone (NEJM 2015;372:26).
Notably, investigators/clinical sites on the poster included Agarwala/St. Luke's. The trial itself also is recruiting at Huntsman Cancer Institute (Andtbacka).
Since this is a collaboration with Merck, it would appear the Big Pharma is not requiring rigorous safety testing before the project moves to Phase 2 (a Merck staffer is a co-author on the ESMO 2016 poster). The poster's Methods section notes the trial is a dose-escalation and dose expansion study. It shows data from dose-escalation (i.e., 2 mg, 4 mg, 8 mg), but does appear to refer to the dose expansion portion, which normally would be additional patients at the highest tolerated dose. The N = 6 at 8 mg is dose expansion but, again, if Merck wants to green light this work to a Phase 2 trial, [as a Big Pharma] they probably are not going to get significant push-back from the FDA or institutional review boards (IRBs). If a small biotechnology company has a major player backing it, it is possible to do things that are not plausible for outsiders (i.e., the golden rule). Finally, this study might give Amgen pause, since SD-101 appears to function similarly to T-Vec, may produce a more robust effect than T-Vec and, most importantly, is not a live virus.
Updated (10/19/16): OncoSec. ref. "OncoSec (ONCS) Q4 2016 Earnings Call Transcript," Seeking Alpha
I referenced epIL-12 (and OncoSec) above because of the useful information regarding anti-PD-1 failures or non-responders. The oncology playing field continues to evolve, and combination therapy approaches clearly are evolving as well across multiple dimensions, like (i) determining which patients when and how [immune biomarkers], and (ii) expanding the addressable market from responders to non-responders.
Among other aspects of an analysis of epIL-12 (and OncoSec), which historically has been mentioned together with Amgen's T-Vec and Provectus' PV-10, like at ASCO 2014 (see "Expert Point of View: Axel Hauschild, MD," The ASCO Post, Caroline Helwick, July 25, 2014), (a) there does not appear to be an initial pathway to approval yet (if at all) for epIL-12 as a monotherapy and (b) the investigator-initiated study was neither designed nor powered to transition to a pivotal trial as a combination therapy. OncoSec hopes to secure agreement with (acquiescence by) the FDA on a pivotal/registration trial design by the end of the year. Initial pathways to approval, like what Provectus has with PV-10 as a monotherapy for locally advanced cutaneous melanoma, as with valuable beachfront property, is valuable drug treatment "real estate." Nevertheless, it is a good strategy for OncoSec to focus on PD-1 failures; using emerging biomarker data to select "likely" PD-1 failures, however, is likely to prove somewhat more challenging. It will be interesting to see how this plays out.
Dynavax. This is a true treatment combination and company collaboration (compared to the OncoSec treatment combination, for which the clinical trial protocol is here). The results are interesting, if not very preliminary (e.g., efficacy from 5 patients, measurement [for purposes of the ESMO 2016 abstract] was made after only 12 weeks). One would have hoped they could have provided a few more details (e.g, the number of injections of SD-101 [presumably 11 in total], more details on patient stage [particularly Stage IV, like M1a, M1b and/or M1c], what the grade 4 SAE was, etc.).
A 25% serious adverse event (SAE) rate seems a bit high, and this is kind of an odd way to report safety data; usually this is reported as CTCAE Grade 3 or higher events since this includes both severe AEs and the subset of those that qualify as SAEs. Robert et al. reported 10.1-13.3% rate of Grade 3 or higher AEs for pembrolizumab alone (NEJM 2015;372:26).
Notably, investigators/clinical sites on the poster included Agarwala/St. Luke's. The trial itself also is recruiting at Huntsman Cancer Institute (Andtbacka).
Since this is a collaboration with Merck, it would appear the Big Pharma is not requiring rigorous safety testing before the project moves to Phase 2 (a Merck staffer is a co-author on the ESMO 2016 poster). The poster's Methods section notes the trial is a dose-escalation and dose expansion study. It shows data from dose-escalation (i.e., 2 mg, 4 mg, 8 mg), but does appear to refer to the dose expansion portion, which normally would be additional patients at the highest tolerated dose. The N = 6 at 8 mg is dose expansion but, again, if Merck wants to green light this work to a Phase 2 trial, [as a Big Pharma] they probably are not going to get significant push-back from the FDA or institutional review boards (IRBs). If a small biotechnology company has a major player backing it, it is possible to do things that are not plausible for outsiders (i.e., the golden rule). Finally, this study might give Amgen pause, since SD-101 appears to function similarly to T-Vec, may produce a more robust effect than T-Vec and, most importantly, is not a live virus.
No comments:
Post a Comment